Kernel Whitening for One-Class Classification
نویسندگان
چکیده
In one-class classification one tries to describe a class of target data and to distinguish it from all other possible outlier objects. Obvious applications are areas where outliers are very diverse or very difficult or expensive to measure, such as in machine diagnostics or in medical applications. In order to have a good distinction between the target objects and the outliers, good representation of the data is essential. The performance of many one-class classifiers critically depends on the scaling of the data and is often harmed by data distributions in (nonlinear) subspaces. This paper presents a simple preprocessing method which actively tries to map the data to a spherical symmetric cluster and is almost insensitive to data distributed in subspaces. It uses techniques from Kernel PCA to rescale the data in a kernel feature space to unit variance. This transformed data can now be described very well by the Support Vector Data Description, which basically fits a hypersphere around the data. The paper presents the methods and some preliminary experimental results.
منابع مشابه
MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملAn optimal kernel feature extractor and its application to EEG signal classification
An optimal nonlinear feature extractor for extracting energy features under two different kinds of patterns is proposed. It carries out the simultaneous diagonalization of two signal covariance matrices in a high-dimensional kernel transformed space, and thus promises to find features which are more discriminant, especially when the original data have nonlinear structures. Two operations, white...
متن کاملRare signal component extraction based on kernel methods for anomaly detection in hyperspectral imagery
Anomaly detection is one of hot research topics in hyperspectral remote sensing. For this task, RX detector (RXD) is a benchmark method. Unfortunately, Gaussian distribution assumption adopted by RXD cannot be well satisfied in hyperspectral images due to high dimensionality of data and complicated correlation between spectral bands. In this paper, we address this problem and propose an algorit...
متن کاملOnline learning of positive and negative prototypes with explanations based on kernel expansion
The issue of classification is still a topic of discussion in many current articles. Most of the models presented in the articles suffer from a lack of explanation for a reason comprehensible to humans. One way to create explainability is to separate the weights of the network into positive and negative parts based on the prototype. The positive part represents the weights of the correct class ...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کامل